Elementary Statistics Lecture 8
 Comparing Two Groups

Chong Ma

Department of Statistics
University of South Carolina

Outline

(1) Comparing Two Means

- Two Independent Samples Comparison - Two Dependent Samples Comparison
(2) Comparing Two Proportions
- Confidence Interval for Comparing Proportions
- Hypothesis Test for Comparing Proportions
(3) Types of Errors in Significance Tests

Confidence Interval for $\mu_{1}-\mu_{2}$

Given two populations $X_{1} \sim\left(\mu_{1}, \sigma_{1}\right)$ and $X_{2} \sim\left(\mu_{2}, \sigma_{2}\right)$, we are interested in making inference about $\mu_{1}-\mu_{2}$.

Confidence Interval for Difference Between Population Means Assumptions

- A quantitative response variable observed in each of two groups.
- Independent random samples, either from random sampling or a randomized experiment.
- An approximately normal population distribution for each group.(mainly important for small sample sizes and even then the method is robust to violations of this assumption)

Confidence Interval $\left(\sigma_{1}^{2} \neq \sigma_{2}^{2}\right)$

Confidence Interval for Difference Between Population Means

For two samples with sizes n_{1} and n_{2} and standard deviations s_{1} and s_{2}, a 95% confidence interval for the difference $\mu_{1}-\mu_{2}$ between the two population means is

$$
\left[\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{.025}(s e)\right], \text { with } s e=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

Where $t_{.025}$ is the t-score with right-tail probability 0.025 with degrees of freedom $d f^{*}$. And

$$
d f^{*}=\frac{\left(\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}\right)^{2}}{\frac{1}{n_{1}-1}\left(\frac{s_{1}^{2}}{n_{1}}\right)^{2}+\frac{1}{n_{2}-1}\left(\frac{s_{2}^{2}}{n_{2}}\right)^{2}}
$$

Remark: Use unpooled se if $\frac{s_{1}}{s_{2}}>2$ or $\frac{s_{1}}{s_{2}}<0.5$.

Confidence Interval $\left(\sigma_{1}^{2}=\sigma_{2}^{2}\right)$

Confidence Interval for Difference Between Population Means

 For two samples with sizes n_{1} and n_{2} and standard deviations s_{1} and s_{2}, a 95% confidence interval for the difference $\mu_{1}-\mu_{2}$ between the two population means is$$
\left[\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{.025}(s e)\right], \text { with } s e=s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

Where $t_{.025}$ is the t-score with right-tail probability 0.025 with degrees of freedom $d f=n_{1}+n_{2}-2$. And

$$
s=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}
$$

Remark: Use pooled se if $0.5<\frac{s_{1}}{s_{2}}<2$

Significance Test for $\mu_{1}-\mu_{2}\left(\sigma_{1}^{2} \neq \sigma_{2}^{2}\right)$

1. Assumption (refer to Confidence Interval Assumption)
2. Hypothesis $H_{0}: \mu_{1}=\mu_{2}$ VS. $H_{a}: \mu_{1} \neq \mu_{2}$ (two-sided)
(One-sided $H_{a}: \mu_{1}>\mu_{2}$ or $H_{a}: \mu_{1}<\mu_{2}$)
3. Test Statistic

$$
T=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{s e} \text { where } s e=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

4. P-value Two-tail probability from t distribution of values even more extreme than observed t test statistic, presuming H_{0} is true with degrees of freedom $d f^{*}$ (refer to slides 4).
5. Conclusion Reject H_{0} if P -value $\leq \alpha$ (significance level, usually be 0.05). Smaller P -values give stronger evidence against H_{0} and supporting H_{a}. Interpret the P -value in context.

Significance Test for $\mu_{1}-\mu_{2}\left(\sigma_{1}^{2}=\sigma_{2}^{2}\right)$

1. Assumption (refer to Confidence Interval Assumption)
2. Hypothesis $H_{0}: \mu_{1}=\mu_{2}$ VS. $H_{a}: \mu_{1} \neq \mu_{2}$ (two-sided)
(One-sided $H_{a}: \mu_{1}>\mu_{2}$ or $H_{a}: \mu_{1}<\mu_{2}$)
3. Test Statistic

$$
T=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{s e} \text { where } s e=s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

Where $s=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}$
4. P-value Two-tail probability from t distribution of values even more extreme than observed t test statistic, presuming H_{0} is true with degrees of freedom $d f=n_{1}+n_{2}-2$.
5. Conclusion Reject H_{0} if P -value $\leq \alpha$ (significance level, usually be 0.05). Smaller P -values give stronger evidence against H_{0} and supporting H_{a}. Interpret the P -value in context.

Housework for women and men

Do women tend to spend more time on housework than men? If so, how much more? Based on data from the National Survey of Families and Households, one study reported the results in the table for the number of hours spend in housework per week.

Housework Hours

Gender	Sample Size	Mean	Standard Deviation
Women	476	33.0	21.9
Men	496	19.9	14.6

a. Calculate the population mean more hours that women spend on housework than men.
b. Calculate the standard error for comparing the means.
c. Calculate the 95% confidence interval comparing the population means for women and men.
d. State the assumptions upon which the interval in part c is based.

Housework for women and men

Housework Hours

Gender	Sample Size	Mean	Standard Deviation
Women	476	33.0	21.9
Men	496	19.9	14.6

a. $\bar{x}_{1}-\bar{x}_{2}=33.0-19.9=13.1$
b. Note $s_{1} / s_{2}=21.9 / 14.6=1.5<2$, consider pooled standard errors. Thus,

$$
s=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}=18.54, s e=s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=1.19
$$

c. $\left[\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm 1.96 \mathrm{se}\right]=[13.1 \pm 1.96 * 1.19]=[10.77,15.43]$
d. Random, Independent, approximately normal.

Continue...

Housework Hours

Gender	Sample Size	Mean	Standard Deviation
Women	476	33.0	21.9
Men	496	19.9	14.6

Interpretation: We have 95% confidence that on the average, women spend on housework at least 10.77 hours and at most 15.43 hours more than men. Since 0 is not contained in the 95% confidence interval, we have sufficient evidence to conclude that women spend more hours on housework than men.

Nicotine dependence

A study on nicotine dependence for teenage smokers obtained a random sample of seventh graders. The response variable was constructed from a questionnaire called the Hooked on Nicotine Checklist(HONC). The higher HONC, the more hooked that students is on nicotine. One explanatory variable considered in the study was whether a subject reported inhaling when smoking.

HONC Score

Group	Sample Size	Mean	Standard Deviation
Inhalers	237	2.9	3.6
Noninhalers	95	0.1	0.5

a. Calculate the standard error for comparing the means.
b. Calculate the 95% confidence interval comparing the population means for inhalers and noninhalers.
c. Interpret the 95% confidence interval.

Nicotine dependence

HONC Score

Group	Sample Size	Mean	Standard Deviation
Inhalers	237	2.9	3.6
Noninhalers	95	0.1	0.5

a. Note $s_{1} / s_{2}=3.6 / 0.5=7.2>2$, consider unpooled standard errors.

Thus,

$$
s e=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}=0.24
$$

b. $\left[\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm 1.96 s e\right]=[2.8 \pm 1.96 * 0.24]=[2.33,3.27]$
c. With 95% confidence, the inhalers' HONC is at least 2.33 and at most 3.27 more than noninhalers on the average.

Females or males more nicotine dependent?

Refer to previous example about studying nicotine dependence using a random sample of teenagers. Of those seventh graders in the study who had tried tobacco, the mean HONC score was $2.8(\mathrm{~s}=3.6)$ for the 150 females and 1.6 $(\mathrm{s}=2.9)$ for the 182 males.
a. Calculate the standard error for comparing the means.
b. Find the test statistic and the P-value for $H_{0}: \mu_{1}=\mu_{2} \mathrm{~V}$ s. $H_{a}: \mu_{1} \neq \mu_{2}$. Interpret and explain what(if any) effect gender has on the mean HONC score.

Females or males more nicotine dependent?

Refer to previous example about studying nicotine dependence using a random sample of teenagers. Of those seventh graders in the study who had tried tobacco, the mean HONC score was $2.8(\mathrm{~s}=3.6)$ for the 150 females and $1.6(\mathrm{~s}=2.9)$ for the 182 males.
a. Note $s_{1} / s_{2}=3.6 / 2.9=1.24<2$, consider pooled se.

$$
s=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}}=3.23, s e=s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}=0.36
$$

b.

$$
T=\frac{\left(\bar{x}_{1}-\bar{x}_{2}\right)-0}{s e}=\frac{1.2}{0.36}=3.36, P-\text { value }=P(|T|>3.36)=0.0009
$$

Reject H_{0} since P-value; 0.05 . We have sufficient evidence to conclude that the population HONC scores are different between genders.

CI for Dependent Samples Comparison

To compare means with dependent samples, conduct confidence interval and hypothesis tests using the single sample of differences.

The 95% confidence interval for the population mean difference $\mu_{1}-\mu_{2}$ $\left(\mu_{d}\right)$ is

$$
\left[\bar{x}_{d} \pm t_{.025}(s e)\right] \text { with } s e=s_{d} / \sqrt{n}
$$

where \bar{x}_{d} and s_{d} are sample mean and standard deviation of the differences between two matched-pairs, respectively. Again, $t_{0.025}$ is the t-score having 0.025 right-tail probability with degrees of freedom $n-1$ and n is the number of paired-observations.

Significance Test for Dependent samples Comparison

1. Assumption

- The sample of differences is a random sample.
- The differences have an approximately normal distribution.

2. Hypothesis

$$
\begin{aligned}
& H_{0}: \mu_{1}-\mu_{2}=0 \mathrm{Vs} . H_{a}: \mu_{1}-\mu_{2} \neq 0(\text { two-sided }) \\
& \operatorname{Or}\left(H_{0}: \mu_{d}=0 \mathrm{Vs} . H_{a}: \mu_{d} \neq 0\right)
\end{aligned}
$$

3. Test Statistic

$$
T=\frac{\bar{x}_{d}-0}{s_{d} / \sqrt{n}}
$$

4. P-value Two-tail probability from t distribution of values even more extreme than observed t test statistic, presuming H_{0} is true with degrees of freedom $d f=n-1$.
5. Conclusion Reject H_{0} if P -value $\leq \alpha$ (significance level, usually be 0.05). Smaller P -values give stronger evidence against H_{0} and supporting H_{a}. Interpret the P -value in context.

Cell Phone while Driving Reaction Times

An experiment investigated whether cell phone use impairs drivers' reaction times, using a sample of 64 students from the university of Utah. Students were randomly assigned to a cell phone group or to a control group, 32 to each. On a simulation of driving situations, a target flashed red or green at irregular periods. Participants pressed a brake button as soon as they detected a red light. Reaction times are measured when subjects performed the driving task without using cell phones and then again while the same subjects used cell phones.

Using Cell Phone?

Student	No	Yes	Difference
1	604	636	32
2	556	623	67
\ldots	\ldots	\ldots	\ldots
31	521	527	6
32	543	536	-7

Cell Phone while Driving Reaction Times

Summary statistics:
Column n Mean Std. dev. Std. err.
Differences 3251.59375117 .1086820 .702085
95\% confidence interval

$$
\left[\bar{x}_{d} \pm t_{.025,31} s e\right]=[51.59 \pm 2.04 * 20.7]=[9.37,93.8]
$$

Hypothesis Test $H_{0}: \mu_{d}=0$ Vs. $H_{a}: \mu_{d} \neq 0$

$$
T=\frac{\bar{x}_{d}-0}{s e}=\frac{51.59}{20.7}=2.49, \text { pvalue }=P(|T|>2.49)=0.018
$$

Cell Phone while Driving Reaction Times

Paired T hypothesis test:
D = 1-2 : Mean of the difference between Cell phone and Cont
HO : D = 0
HA : D != 0
Hypothesis test results:
Difference Mean Std. Err. DF T-Stat P-value
Cell phone - Control 51.5937520 .702085312 .49220060 .0182

Interpret: At the significance level $\alpha=0.05$, reject H_{0} because P -value i 0.05 . We have sufficient evidence to conclude that the population mean reaction times are different for using and not using cellphones while driving.

Outline

(1) Comparing Two Means

- Two Independent Samples Comparison - Two Dependent Samples Comparison
(2) Comparing Two Proportions
- Confidence Interval for Comparing Proportions
- Hypothesis Test for Comparing Proportions
(3) Types of Errors in Significance Tests

Comparing Two Population Proportions

A recent meta-analysis combined the results of eight related studies with a minimum duration of treatment of four years to determine the effects of aspirin on the risk of cancer depth. All experimental trials used were randomized and double-blind.

Death from Cancer

Group	Yes	No	Total
Placebo	347	11,188	11,535
Aspirin	327	13,708	14,035
Total	674	24,896	25,570

Question. Is there of any difference in cancer-death proportion between two populations of intaking placebo and Aspirin? If there is, how much magnitude of values between the two population proportions in terms of cancer death?

Confidence Interval for Comparing Proportions

Assume that we have two populations, with success probabilities p_{1} and p_{2}, respectively. A confidence interval for the difference $p_{1}-p_{2}$ between two population proportions is

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z(\text { se }), \text { where se }=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

z-score depends on the confidence level, such as $z=1.96$ for 95% confidence. The method is constructed based on the following assumptions

- A categorical response variable observed in each of two groups.
- Independent random samples for the two groups, either from random sampling or a randomized experiment.
- Large enough sample sizes n_{1} and n_{2}, so that in each sample there are at least 10 successes and 10 failures.

Confidence Interval for Comparing Proportions

- $\hat{p}_{1}=\frac{347}{11,535}=0.0301, \hat{p}_{2}=\frac{327}{14,035}=0.0233$

$$
\begin{aligned}
s e & =\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}} \\
& =\sqrt{\frac{0.0301 *(1-0.0301)}{11,535}+\frac{0.0233 *(1-0.0233)}{14,035}} \\
& =0.002
\end{aligned}
$$

- 95% confidence interval

$$
\left[\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm 1.96 * s e\right]=[0.0068 \pm 0.004]=[0.0028,0.0108]
$$

- Interpretation: With 95% confidence, the cancer-death proportion for placebo-intake population is at least 0.28% and at most 1.08% higher than that for Aspirin-intake population on the average.

Hypothesis Test for Comparing Proportions

1. Assumptions (refer to confidence interval)
2. Hypothesis

$$
\begin{aligned}
& H_{0}: p_{1}=p_{2}\left(p_{1}-p_{2}=0\right) \\
& H_{a}: p_{1} \neq p_{2}\left(\text { or } p_{1}>p_{2} \text { or } p_{1}<p_{2}\right)
\end{aligned}
$$

3. Test Statistics

$$
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{s e_{0}} \text { with } s e_{0}=\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

where \hat{p} is the pooled estimate.
4. \mathbf{P}-value

P-value=Two-tail probability from standard normal distribution of values even more extreme than observed z test statistic presuming H_{0} is true.

5. Conclusion

Smaller P-values give stronger evidence against H_{0} and supporting H_{a}. Reject H_{0} if P -value $\leq \alpha$ (significance level, such as 0.05).

Hypothesis Test for Comparing Proportions

1. Assumptions

Categorical, independent random, large enough successes(failures)
2. Hypothesis $H_{0}: p_{1}=p_{2}$ vs. $H_{a}: p_{1} \neq p_{2}$
3. Test Statistic

$$
z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-0}{s e_{0}}=\frac{0.0068}{0.002}=3.38
$$

where $\hat{p}=\frac{674}{25570}=0.0264, s e_{0}=\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}=0.002$
4. \mathbf{P}-value P -value $=P(|Z|>3.38)=0.0007$
5. Conclusion Reject H_{0} since P-value 0.05 . At the level of significance 0.05 , we have sufficient evidence to conclude that there is of difference in cancer-death proportion between the placebo-intake population and the Aspirin-intake population.

Outline

(1) Comparing Two Means

- Two Independent Samples Comparison - Two Dependent Samples Comparison
(2) Comparing Two Proportions
- Confidence Interval for Comparing Proportions
- Hypothesis Test for Comparing Proportions
(3) Types of Errors in Significance Tests

Types of Errors

Significance tests can have two types of potential errors, called Type I and Type II errors. Type I and Type II errors are actually two probabilities, and they are inversely related. In other words, as type I error goes down, type II error goes up.

- when H_{0} is true, a Type I error occurs when H_{0} is rejected.
- when H_{0} is false, a Type II error occurs when H_{0} is not rejected.

Decisions

Reality About H_{0}	Do not reject H_{0}	Reject H_{0} H_{0} true
H_{0} false	Correct decision	Type I error

Table 1: The Four Possible Results of a Decision in a Significance Test
Remark. $\mathrm{P}($ Type I error $)=$ Significance level α. i.e., Suppose H_{0} is true. The probability of rejecting H_{0}, thereby making a Type I error, equals the significance level for the test.

Types of Errors

Legal Decision

Table 2: The Four Possible Results of a legal trial

Consequences for different types of errors

- A potential consequence of a Type I error is sending an innocent person to jail.
- A potential consequence of a Type II error is setting free a guilty person.

Practice Problems

- Page 436-439 9.62, 9.63, 9.67, 9.68, 9.77
- Page 458-459 10.5, 10.10, 10.11, 10.12
- Page 470-472 10.19, 10.20, 10.27, 10.29
- Page 506-508 10.79, 10.85, 10.89, 10.94, 10.98

